Skeletonization and classification by Bayesian classifier algorithm for object recognition

نویسندگان

  • Pankaj Manohar Pandit
  • Sudhir Gangadharrao Akojwar
چکیده

This paper describes and demonstrates a graphical method of Skeletal Shock Graph, which is based on the shape or geometry of the object. Shock Graph is an abstraction of the skeleton of a shape onto a Directed Acyclic Graph (DAG) in which the skeleton points are labeled according to the local variation of the radius function at each point. A large image data base is created by using suitable image acquisition technique, which is converted into binary images. Skeleton and its labeling of the binary image is obtained by applying Skeletonization Algorithm. Then next steps adopted are formation of Shock Graph and labeled tree, indexing the data base and generation of attribute vectors, pruning the data base and lastly matching the tree of query image with that of database images for recognition. This paper discusses and demonstrates the existing challenges and prospective research areas in Skeletal Shock Graph based object recognition and also presents some comparative results against the geodesic path method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013